LINEAR PROGRAMMING (LP) - PRODUCT-MIX EXAMPLE

Consider a product-mix example where one is concerned with what mix of 4 products he should produce during the upcoming week. Production of each product requires a given amount of production time on each of three machines, and each machine has a certain available production time per week. If each product provides certain profit, one need to determine an optimal product-mix so as to maximize profit while considering constraints related to the limited production capacity of machines. Example data for product-mix are given in the following table [Hillier].

	Production time per unit (h)				Production time available per week (h)
	Product				
Machine for	A	B	C	D	28
Rolling	1.7	2.1	1.4	2.4	34
Cutting	1.1	2.5	1.7	2.6	21
Welding	1.6	1.3	1.6	0.8	
Profit per unit (\$)	26	35	25	37	

The above described product-mix problem can be formulated as follows:
Maximize $26 x_{1}+35 x_{2}+25 x_{3}+37 x_{4}$
subjectto: $1.7 x_{1}+2.1 x_{2}+1.4 x_{3}+2.4 x_{4} \leq 28$
$1.1 x_{1}+2.5 x_{2}+1.7 x_{3}+2.6 x_{4} \leq 34$
$1.6 x_{1}+1.3 x_{2}+1.6 x_{3}+0.8 x_{4} \leq 21$

The obtained optimization solutions indicate that one should produce 10 units of product B and 5 units of product C so as to obtain maximal profit of $475 \$$. The optimization solution of the LINGO is the same as could be observed from the given report [Hillier].

Variable	Value	Reduced Cost
PRODUCE (P01)	0.0000000	3.577921
PRODUCE (P02)	10.00000	0.0000000
PRODUCE (P03)	5.000000	0.0000000
PRODUCE (P04)	0.0000000	1.441558
Row	Slack or Surplus	Dual Price
1	475.0000	1.000000
2	0.0000000	15.25974
3	0.5000000	0.0000000
4	0.0000000	2.272727

Beside this optimal solution, in BRUTOMIZER® the user is provided with other solutions which are close to optimal solution. For example, production of 7 units of product $B, 6$ units of product C and 2 units of product D yield profit of $469 \$$. Similarly, production of 1 unit of product $A, 8$ units of product B, 5 units of product C and 1 unit of product D yield profit of $468 \$$.

References:

[Hillier] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, McGraw-Hill, 2001.

