LINEAR PROGRAMMING (LP) - PRODUCT-MIX EXAMPLE

Consider a product-mix example where one is concerned with what mix of 4 products he should produce during the upcoming week. Production of each product requires a given amount of production time on each of three machines, and each machine has a certain available production time per week. If each product provides certain profit, one need to determine an optimal product-mix so as to maximize profit while considering constraints related to the limited production capacity of machines. Example data for product-mix are given in the following table [Hillier].

	Prod	uction	time pe	er unit (h)	Production time available per week (h)	
		P	roduct			
Machine for	A	В	С	D		
Rolling	1.7	2.1	1.4	2.4	28	
Cutting	1.1	2.5	1.7	2.6	34	
Welding	1.6	1.3	1.6	0.8	21	
Profit per unit (\$)	26	35	25	37		

The above described product-mix problem can be formulated as follows:

$$\begin{aligned} \textit{Maximize} \ \ & 26x_1 + 35x_2 + 25x_3 + 37x_4 \\ \textit{subject to}: \ & 1.7x_1 + 2.1x_2 + 1.4x_3 + 2.4x_4 \leq 28 \\ & 1.1x_1 + 2.5x_2 + 1.7x_3 + 2.6x_4 \leq 34 \\ & 1.6x_1 + 1.3x_2 + 1.6x_3 + 0.8x_4 \leq 21 \end{aligned}$$

The obtained optimization solutions indicate that one should produce 10 units of product B and 5 units of product C so as to obtain maximal profit of 475\$. The optimization solution of the LINGO is the same as could be observed from the given report [Hillier].

Variable		Value		Reduced	Cost
PRODUCE (P01)	0	.0000000	3.577	921
PRODUCE (P02)		10.00000	0.0000	000
PRODUCE (P03)		5.000000	0.0000	000
PRODUCE (P04)	0	.0000000	1.441	558
_	a1 1				
Row	Staci	c or a	Surplus	Dual Pri	ce
1		475.0	000	1.00000	0
2	(0.0000	000	15.2597	4
3	(.5000	000	0.000000	0
4	(0.0000	000	2.27272	7

Beside this optimal solution, in BRUTOMIZER© the user is provided with other solutions which are close to optimal solution. For example, production of 7 units of product B, 6 units of product C and 2 units of product D yield profit of 469\$. Similarly, production of 1 unit of product A, 8 units of product B, 5 units of product C and 1 unit of product D yield profit of 468\$.

References:

[Hillier] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, McGraw-Hill, 2001.